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ECP ST Overview
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Provide the next generation of 
DOE software capabilities 
targeted toward exascale 
applications and platforms.  
Provide these capabilities for the 
specific exascale systems as 
a high quality, sustainable 
product suite.

Scope

Capabilities across the entire 
HPC software stack that 
complement and coordinate
with facilities, vendors and 
other software providers to 
enable effective execution of 
ECP apps, and deliver a 
capable, sustainable exascale
ecosystem.

Deliver a software stack that enables sustainable exascale capabilities 

Mission 
need Objective
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Hardware and Integration
2.4

Project Management
2.1

Project Planning 
and Management

2.1.1

Project Controls and Risk 
Management

2.1.2

Information Technology 
and Quality Management

2.1.5

Business Management
2.1.3

Procurement Management
2.1.4

Communications 
and Outreach

2.1.6

Chemistry and Materials 
Applications

2.2.1

Energy Applications
2.2.2

National Security 
Applications

2.2.5

Earth and Space Science 
Applications

2.2.3

Application Development
2.2

Software Technology
2.3

Programming Models 
and Runtimes

2.3.1

Development Tools
2.3.2

Software Ecosystem 
and Delivery

2.3.5

Mathematical Libraries
2.3.3

Data and Visualization
2.3.4

Data Analytics and 
Optimization Applications

2.2.4

Co-Design
2.2.6

PathForward
2.4.1

Hardware Evaluation
2.4.2

Facility Resource 
Utilization

2.4.5

Application Integration 
at Facilities 

2.4.3

Software Deployment 
at Facilities

2.4.4

Training and Productivity
2.4.6

Exascale Computing Project 
2.0
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ECP Software Technology Leadership Team

Rajeev Thakur, Programming Models and Runtimes (2.3.1)
Rajeev is a senior computer scientist at ANL and most recently led the ECP Software Technology focus area. His research interests are in parallel 

programming models, runtime systems, communication libraries, and scalable parallel I/O. He has been involved in the development of open source 

software for large-scale HPC systems for over 20 years.

Jeff Vetter, Development Tools (2.3.2)
Jeff is a computer scientist at ORNL, where he leads the Future Technologies Group. He has been involved in research and development of 

architectures and software for emerging technologies, such as heterogeneous computing and nonvolatile memory, for HPC for over 15 years.

Lois Curfman McInnes, Math Libraries (2.3.3)
Lois is a senior computational scientist in the Mathematics and Computer Science Division of ANL. She has over 20 years of experience in high-

performance numerical software, including development of PETSc and leadership of multi-institutional work toward sustainable scientific software 

ecosystems. 

Jim Ahrens, Data and Visualization (2.3.4)
Jim is a senior research scientist at the Los Alamos National Laboratory (LANL) and an expert in data science at scale. He started and actively 

contributes to many open-source data science packages including ParaView and Cinema. 

Rob Neely, Software Ecosystem and Delivery (2.3.5)
Rob has several leadership roles at LLNL spanning applications, CS research, platforms, and vendor interactions. He is an 

Associate Division Leader in the Center for Applied Scientific Computing (CASC), chair of the Weapons Simulation and 

Computing Research Council, and the lead for the Sierra Center of Excellence.

Mike Heroux, Software Technology Director
Mike has been involved in scientific software R&D for 30 years.  His first 10 were at Cray in the LIBSCI and scalable apps groups. At Sandia he 

started the Trilinos and Mantevo projects, is author of the HPCG benchmark for TOP500, and leads productivity and sustainability efforts for DOE.

Jonathan Carter, Software Technology Deputy Director
Jonathan has been involved in the support and development of HPC applications for chemistry, the procurement of HPC systems, and the evaluation 

of novel computing hardware for over 25 years. He currently a senior manager in Computing Sciences at Berkeley Lab.
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ECP ST SW Stack Version 1

Correctness Visualization Data Analysis

Applications Co-Design

Programming Models, 
Development Environment, and 

Runtimes

System Software, Resource 
Management Threading, 
Scheduling, Monitoring, 

and Control

ToolsMath and Scientific 
Libraries/Frameworks

Memory and 
Burst buffer

Data Management,
I/O and File System

Node OS, low-level runtimes
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ECP ST SW Stack Version 2

Applications Co-Design

Software Ecosystem & Delivery

Development
Tools

Data & Visualization

Hardware interface

Programming
Models

Runtimes
Mathematical

Libraries
Embedded Data & 

Visualization
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Goal
Build a comprehensive, 
coherent software stack 
that enables application 
developers to 
productively write highly 
parallel applications that 
effectively target diverse 
exascale architectures

ECP software: Productive, sustainable ecosystem

Extend current technologies to exascale where possible

Perform R&D required for new approaches when necessary

Coordinate with and complement vendor efforts

Develop and deploy high-quality and robust software products

56 WBS L4 subprojects executing RD&D
195 L4 subproject (P6) milestones delivered in FY17
426 L4 subproject (P6) milestones planned in FY18-19
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Challenges
Qualitative changes: 
Massive concurrency; 
Multi-scale, multi-
physics, data-driven 
science; Ecosystem 
integration

ECP software: Challenges

Billion way concurrency: Several novel compute nodes.

Coupled apps: Physics, scales, in situ data, more.

Data-driven: New software HPC environments, containers.

Ecosystem: Part of a large, complex, evolving SW environment.
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Overview of ECP ST Technical Areas
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Key 
themes

Programming Models 
and Runtimes “+” in MPI+X: 

Addressing 
high on-node 
concurrency

Portable 
expression 
of highly 

concurrent 
algorithms

New, 
deployable 

programming 
models

Extension 
of core 

environments: 
MPI, OpenMP

Promoting 
standards: MPI, 

OpenMP, 
ISO/C++
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Development 
Tools

Key 
themes

Code 
generation and 
programming 
technologies

Scalability 
analysis 

tools

Performance 
analysis 

on new node 
architectures

Rapid 
adaptation 

to new node 
architectures
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Key 
themes

Performance  
on new node 
architectures

Extreme   
strong 

scalability

Advanced, 
coupled 

multiphysics, 
multiscale

Optimization, 
UQ, solvers, 

discretizations

Interoperability, 
complementarity: 

xSDK

Math 
Libraries
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Key 
themes

Hierarchical 
storage 
systems

Adaptation 
to new node 
architectures

Data 
compression, 

data 
warehouses

In situ 
visualization

Novel 
visualization 
approaches

Data and 
Visualization
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Key 
themes

Hierarchical, 
integrated 

delivery of full 
ST stack

Container-
based 

workflows

New level 
of collaboration 

and 
coordination

Software 
Ecosystem 
and Delivery
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Some Recent Application Examples of the Issues.
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Simultaneous heterogeneous execution

• HPCG on Trinity

• 9380 Haswell, 9984 KNL compute nodes.
– Haswell

• Processor dimensions: 27x42x17
• Local grid dimensions: 160x160x112

– KNL 
• Processor dimensions: 27x42x34
• Local dimensions: 160x160x152

• HPCG result: 546 TF/s (3rd).
– Previous 180 TF/s for Haswell only.

• Key Point: For sparse codes, it’s about the memory system.

HPCG on SIERRA (Power9’s + 4 Voltas):
• About 10% of performance is from Power9’s
• Summit 6 GPUs: Power9’s less important.
• Both: 

• Code complexity challenging.
• Runtime system complexity (MPI).
• Work partitioning.
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2-phase porting strategy: TaihuLight

Initial port:
• Vanilla MPI, 1 rank per MPE
• 23.2 GF/s /core
• 4 vector FMA
• 2 pipes
• 16 Flops/cycle FMA
• Peak: 2/65 of node peak

Subsequent optimization:
• Offload any work to CPEs
• 11.6 GF/s /core
• 4 vector FMA
• 1 pipe
• 8 Flops/cycle FMA
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CAM-SE to TaihuLight: 2017 Gordon Bell Finalist

• CAM-SE: Spectral Element Atmospheric dynamical core
– Reported:

• 754,129 SLOC.
• 152,336 SLOC modified for TaihuLight (20%).
• 57,709 SLOC added (8%).
• 12+ team members.

– Challenges:
• Reusability of code seems low: Much of the optimization is specific to Sunway CPE processor.
• Translation effort difficult to accomplish while still delivery science results: Disruptive.

– Other notable example: Uintah (see Dec 2017 ASCAC talk)
• Separation of runtime concerns seems to really help, but app-specific.
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Some Observations from these Efforts

• Even the simplest simultaneous heterogeneous execution is difficult.
– But maybe most apps won’t care: Sequential heterogeneous execution may be sufficient.
– But some probably will: Hard to support.

• MPI-backbone approach is very attractive.
– Initial app port to host backbone, hotspot optimization.
– Investment in portable programming expressions seems essential.
– Separation of functionality expression and work/data mapping seems essential.
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ECP ST Programming Models, Runtimes, Tools for EH
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ECP ST MPI Efforts

• The “+” in MPI+X:
– Two large MPI projects (MPICH and OpenMPI).
– Heavy focus on MPI+X interaction models.
– Heavy focus on runtime support:

• Overlapping comm/comp, ID and remove bottlenecks.
• High performance, correct execution.

• Support for the MPI backbone deployment model:
– Network of host processors + accelerator offload.
– Strong focus on OpenMP interaction.
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Portable On-Node Programming
• OpenMP/OpenACC:

– New features, MPI interoperability.

– Standards Efforts.

• Kokkos, RAJA:

– Write-once, transformable source code.

– Compile-time polymorphic.

– Memory-space abstraction (Kokkos).

– Emphasis to evolve language standards.

• LLVM-based:

– Leverage community convergence on LLVM.

– OpenMP in LLVM

– Flang: LLVM-based Fortran Compiler.

• Qthreads: Light-weight threading API, runtime.
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Portable On-Node Programming (2)

• Code tuning:
– ROSE-based code generation: Source to source, offline optimization.
– Autotuning.

• Tools (several): 
– Insight for performance tuning.
– New approaches for gathering statistics from the system.
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Inter-node Programming

• Projects:
– xGA – Next gen global arrays.
– Legion – Data-driven tasking with programmable mapping.
– ParSEC – lightweight tasking framework.
– UPC++ - C++ based partitioned global address space model. 

• Leverage for EH:
– Experience, opportunities to abstract nodes.
– But not first order priority (IMO).
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Libraries
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Many Library Efforts: Math, I/O, Data, Viz

• Math Libraries: Preserving APIs, but substantial rewrites underneath.
• Embedded data/viz:

– In situ data analysis/compression: substantial algorithms change.
– Conceptual APIs.

• Checkpoint/Restart:
– Same API & execution model, very different implementation.
– Data offload to NVRAM.

• Reusable libraries and components can be a growing portion of our portability 
strategy.
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Software Ecosystem and Delivery
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ECP Software Focus is Substantial, can impact EH

• Emphasis on quality software lifts all boats.
– Goal: Developer productivity, software sustainability.
– We are becoming better scientific software developers.

• Processes and practices for testing and integration.
– Social and technology pathways for accelerating research to production delivery.
– One major legacy of ECP.

• Software distribution channels:
– OpenHPC (or similar) software package distribution.
– Containers – Lower barrier to software access, in line with broader SW community.
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What is Challenging for ECP to Support toward EH

• Timeline (further reduced from 10 to 7 years) leave some efforts out of scope.

• Hard to support R&D with no significant product delivery in 2021-2022 time frame.

• ECP apps and software are focused on Exascale systems (obvious).  

• Off limits: Post-Exascale requirements that are not well aligned with Exascale.

• Opportunity:
– Align Exascale and post-Exascale requirement to maximize leverage.

– Open to ideas that make alignment better.
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ECP for EH: Summary

• ECP efforts for “+” in MPI+X should aid EH significantly.

• ECP efforts for portable, efficient application development (especially on-node) 
should lead to apps that are easier to port to any new architectures.

• Greater emphasis on reusable, compatible software libraries and components 
will improve effective encapsulation of some heterogeneity.

• Providing incentives and opportunities to do a better job of scientific software 
development should make our community more effective and efficient.

• Help us optimize ECP alignment with post-Exascale requirements.


